首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19944篇
  免费   1900篇
  国内免费   1191篇
电工技术   731篇
综合类   1507篇
化学工业   2202篇
金属工艺   1906篇
机械仪表   838篇
建筑科学   2201篇
矿业工程   847篇
能源动力   1571篇
轻工业   504篇
水利工程   638篇
石油天然气   1567篇
武器工业   150篇
无线电   3108篇
一般工业技术   2605篇
冶金工业   609篇
原子能技术   196篇
自动化技术   1855篇
  2024年   54篇
  2023年   298篇
  2022年   470篇
  2021年   624篇
  2020年   653篇
  2019年   593篇
  2018年   514篇
  2017年   715篇
  2016年   707篇
  2015年   764篇
  2014年   1165篇
  2013年   1212篇
  2012年   1447篇
  2011年   1644篇
  2010年   1163篇
  2009年   1176篇
  2008年   1126篇
  2007年   1286篇
  2006年   1260篇
  2005年   986篇
  2004年   816篇
  2003年   770篇
  2002年   620篇
  2001年   570篇
  2000年   490篇
  1999年   380篇
  1998年   290篇
  1997年   254篇
  1996年   196篇
  1995年   178篇
  1994年   123篇
  1993年   130篇
  1992年   104篇
  1991年   65篇
  1990年   47篇
  1989年   40篇
  1988年   27篇
  1987年   18篇
  1986年   10篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   8篇
  1979年   7篇
  1976年   2篇
  1965年   1篇
  1964年   1篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The ease of Te sublimation from Bi2Te3-based alloys significantly deteriorates thermoelectric and mechanical properties via the formation of voids. We propose a novel strategy based on atomic layer deposition (ALD) to improve the thermal stability of Bi2Te3-based alloys via the encapsulation of grains with a ZnO layer. Only a few cycles of ZnO ALD over the Bi2Te2.7Se0.3 powders resulted in significant suppression of the generation of pores in Bi2Te2.7Se0.3 extrudates and increased the density even after post-annealing at 500 °C. This is attributed to the suppression of Te sublimation from the extrudates. The ALD coating also enhanced grain refinement in Bi2Te2.7Se0.3 extrudates. Consequently, their mechanical properties were significantly improved by the encapsulation approach. Furthermore, the ALD approach yields a substantial improvement in the figure-of-merit after the post-annealing. Therefore, we believe the proposed approach using ALD will be useful for enhancing the mechanical properties of Bi2Te3-based alloys without sacrificing thermoelectric performance.  相似文献   
12.
Proton exchange membrane fuel cells (PEMFCs) have become the most attractive power supply units for stationary and mobile applications. The operation, design characteristics, as well as performance of PEMFCs, are closely related to the multiphase transport of mass, heat, and electricity in the cell, a critical of which is the gas diffusion layer (GDL). It is very important to guarantee the transmission of water and gasses under high current density, and which is the weakness of PEMFCs at present. Microporous layer (MPL) is considered to be the key variable for mass transfer, so varieties of works focus on modification of MPL materials and its structure design. However, there is still a lack of special review to summarize and prospect the progress of MPL in recent years. This review article therefore focuses on the insights and comprehensive understanding of four critical issues of the MPL, the porosity, pore size distribution, wettability, structural design and the durability of MPL. At last, the conclusion and recommendations section summarized the future prospects and recommendations for possible research opportunities.  相似文献   
13.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
14.
《Ceramics International》2021,47(20):28521-28527
Layered O3 type oxides exhibit promising prospects as high-performance cathodes for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. Nevertheless, the intrinsic surface composition and bulk structure degradation upon cycling presents a huge obstacle to stable sodium-ion storage/transportation. Besides, the effective surface decoration on layered O3 oxides is still challenging through conventional wet chemical route owing to their extraordinarily high surface sensitivities. Herein, a typical O3 type layered oxide of NaNi0.5Mn0.5O2 (NNMO) was selected and successfully encapsulated by precisely controlled Al2O3 layers via atomic layer deposition (ALD) technology. With the optimally controlled Al2O3 thickness of 3 nm, the surface regulated NNMO delivers a highly reversible capacity of 73.6 mA h g-1, with a significantly improved capacity retention of 68.0% after 300 cycles at 0.5 C, and a superior rate capability of 65.8 mA h g-1 at 10 C. Further air sensitivity tests demonstrate that the protective layer could effectively mitigate the generation of sodium-based impurities on NNMO, and reduce the surface sensitivities. Both chemical and electrochemical aging tests confirm the contribution of Al2O3 coating layer in alleviating ion dissolution as well as stabilizing the structure and morphology of NNMO. Based on regulating the surface of O3 type layered oxides utilizing ALD technique, this work supplies an effective and facile strategy to overcome the challenges from fast structure degradation and electrochemical property decay, which not only highlights the significance and effectiveness of surface engineering in secondary batteries, but also sheds light on accurate interface construction and regulation for active electrode materials, particularly for those sensitive to ambient atmosphere.  相似文献   
15.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
16.
《Ceramics International》2020,46(6):7122-7130
This study examines three novel approaches for enhancing the thermoelectric (TE) properties of atomic-layer-deposited (ALD) ZnO thin films: 1) Hf-doping, which preserved the crystallinity of ZnO and provided effective phonon scattering owing to Hf's similar atomic radius to and large mass difference with Zn, leading to high power factor (PF) and low thermal conductivity (κ); 2) controlling the distribution of Hf into an alternating scattered phase/clustered phase superlattice, which balanced the high PF of the scattered phases with the low κ of the clustered phases, while providing significant energy-filtering effect to raise the Seebeck coefficient; 3) introducing 18O/16O periodicity into the Hf:ZnO films—by alternately using H216O and H218O as oxidants in the ALD processes, which further suppressed κ without compromising PF. The combination of the three approaches resulted in a maximum improvement in ZT of ~1600% over that of the undoped ZnO.  相似文献   
17.
Efficient and fully solution-processed blue organic light-emitting diodes (OLEDs) based on fluorescent small-molecule and methanol/water soluble conjugated polymer as electron-injection material are reported. The emitting layer is 3,6-bis(9,9,9′,9′-tetrakis (6-(9H-carbazol-9-yl)hexyl)-9H,9′H-[2,2′-bifluoren]-7-yl)dib-nzo[b, d]thiophene 5, 5-dioxide (OCSoC) with a blue-fluorescent small-molecule, and a methanol/water soluble polymer poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)] (PFN) acted as electron-injection layer (EIL). All the organic layers are spin-coated from solution. The multilayer device structure with emitting layer/electron-injection layer is achieved by solution-processed method without the dissolution problem between layers. The performances of the devices show that the maximum luminous efficiency of the multilayer device is increased about 43%, compared to the single-layer device. PFN acting as the EIL material plays a key role in the improvement of the device performance when used in solution-processed small-molecule OLEDs.  相似文献   
18.
In this study, we have proposed an automated classification approach to identify meaningful patterns in wind field data. Utilizing an extensive simulated wind database, we have demonstrated that the proposed approach can identify low‐level jets, near‐uniform profiles, and other patterns in a reliable manner. We have studied the dependence of these wind profile patterns on locations (eg, offshore vs onshore), seasons, and diurnal cycles. Furthermore, we have found that the probability distributions of some of the patterns depend on the underlying planetary boundary layer schemes in a significant way. The future potential of the proposed approach in wind resource assessment and, more generally, in mesoscale model parameterization improvement is touched upon in this paper.  相似文献   
19.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
20.
基于FLUENT软件的流体体积(VOF)模型研究了不同壁面滑移程度以及不同流道结构参数下4层等厚熔体通过层叠器倍增为8层熔体时,流道中熔体的分层情况变化。结果表明,壁面滑移程度的降低会促使熔体在上下壁面聚集,进而导致上下壁面处熔体层厚增加;汇流段与出口段间圆角半径、汇流段扩压角和平衡段长度这3个结构参数则只会影响熔体在左右壁面的聚集,进而影响各层熔体的尺寸精度,且其中扩压角的影响程度最大,平衡段长度次之,圆角半径的影响较小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号